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Abstract. Point multiplications is a sensitive matter when it comes
to security of cryptosystems based on elliptic curves. Computing the
result of such an operation has considered various methods of represen-
tation for points subject to the operation. Also for efficiency reasons,
often implementations of such cryptosystems would choose special el-
liptic curves. This paper aims at achieving same efficiency properties
by using a novel point multiplication method which is more general
and can be used with recommended elliptic curves in SECG and NIST
documents referring to elliptic curves standards.
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1 INTRODUCTION

Elliptic curves cryptosystems are an important part of today’s cryptography
due to the fact that one can achieve the same level of security as for a RSA
system with less operations and less storage capacity. This leads to usage of
such cryptosystems in smaller and processor challenged devices such as mobile
phones and handsets. This is why elliptic curves are an important mathematical
and cryptographical study subject.

Side-channel attacks rely on power consumption [10] and timing [9] as in-
dicators for complexity of computations required for point multiplication on
implementations of cryptosystems based on elliptic curves. The computational
issue here is obtaining a result of the form:

R = [e]P



70 G. STEPHANIDES, N. CONSTANTINESCU, M. COŞULSCHI

where R is the result, [e] is a integer value, always secret, be it ephemeral or
long-term used, also e is considered to be the key, while P is a point on the
elliptic curve used with the cryptosystem.

The class of elliptic curves used in cryptographic applications require that
they have a prime-order sub-group. The order of this sub-group is denoted by
P . Points of order p are used only.

Following measures can be employed to randomize computations and make
power analysis a harder task for the attacker:

• If the cryptosystem uses projective coordinates for point representation,
then the input point can be transformed in a random equivalent represen-
tation. ( projective coordinates is the most often choice because of efficiency
reasons [1],[7].

• The product [e]P can be expressed using a random point Q as

R = [e](P −Q) + [e]Q

• The product [e]P can be expressed using a random integer n as

R = [e + np]P

or
R = [e− n]P + [n]P

The inserted randomness considered above is meant to reduce the risk of dif-
ferential attacks which use correlations from multiple computations. However if
direct interpretation of readings is possible above measures can become futile.
Simple side-channel analysis works with implementations that use a straight-
forward approach to point multiplication. This is because the bits of the integer
e leave quite an easy trace in the power consumption usage, which can be in-
terpreted, along with the fact that P is publicly available this leads to the
disclosure of the secret integer e if a double-and-add algorithm is used. Al-
gorithms like m-ary or sliding window method may obscure the bits of e but
according to [12] this may still reveal information.

Considering above issues, point representation seems the best solution at
hand. Liardet and Smart [12], and Joye and Quiaquater [8] proposed a set
of curves and special representations that can be used in such manner that
the same formula can be used for both addition and multiplication operations.
Their solution however is not cost-effective and induces performance drawbacks.

In [13] proposes a point multiplication algorithm which is improved by
Okeya and Sakuray in [15] and then is used in [16] for suitable curves over odd
characteristic fields, where the usual group operations are replaced by certain
special operations working with triplets of points with y-coordinates omitted.
This method makes the retrieval of bits from e much harder.

Details of the above methods are not discussed here, however they all have
the disadvantage of inusability with NIST and SECG recommended curves from
[14] and [4]. This leads to major drawbacks in what concerns interoperability.
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This paper proposes a method by which limitations of specific usage of
curves is removed by using a uniform pattern both for addition and multiplica-
tion. Because of this feature the method can help interoperability of systems.

The method uses more addition operations than the standard 2w-ary point
multiplication algorithm. Despite this, dummy additions used in other algo-
rithms to achieve a fixed pattern of point doubling and addition [6] are avoided,
reasons for this are given in next section.

Randomly choosing the integer e avoids failure of the considered method.
Failure occurs in cases where addition involves actually a point doubling or
the point at infinity. These situations are potentially clearly visible through
side-channel analysis.

According to [16] methods of protection presented in the start of this section
can be combined with the use of projective coordinates. We also recommend
integrating the presented method with randomization techniques above men-
tioned.

2 SECURITY OF ELLIPTIC CURVES OPERATIONS

Security analysis often uses a model in order to test side-channel information
leakage. While it is practically impossible to analyse all possible information
leakage, often this model is aimed at specific aspects, configurations or imple-
mentations.

Before presenting the method, information leakage is considered at a lower
level. Subsection 2.1 discusses special cases of point operations that should
be avoided. Subsection 2.2 discusses the importance of using randomized pro-
jective coordinates and certain extended point representations. Also this sub-
section questions the insertion of dummy point additions to achieve uniform
behavior.

2.1 POINT OPERATIONS

Side-channel analysis is the operation which involves gathering of information
concerning timing of computations and power consumption of such operations.
Values that these indicators provide may be interpreted to obtain a certain
order of operations involved in a cryptosystem. To conceal this order a careful
devised algorithm should use point doubling and addition operations in order
to create a uniform pattern which should be independent of the specific multi-
plier used in considered operations. Of course there are exceptions, and these
situations should be treated in a special manner at the time of their occurrence.
These are presented in the following statements:

• Point doubling [2]A requires conditional statements for the case that A is
the point at infinity or that A is a point of order two. If these cases are
avoided, then, expressed in field operations, point doubling runs as a fixed
routine.
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• Point addition A + B requires conditional statements for the case that one
of the points is the point at infinity, or that A coincides with B, or that one
point is the inverse of the other. For other cases, it too can be implemented
as a fixed routine.

Details of the sequences of field operations used for point doubling and point
addition depend on the underlying field (odd characteristic vs. characteristic 2)
and the choice of point representations (e.g. either affine coordinates or one of
multiple styles of projective coordinates, according to [5]), so implementations
may vary widely. The essential observation is that the respective algorithm
always behaves the same as long as the above special cases are avoided.

2.2 FIELD OPERATIONS

An important observation is that when an attacker analyses the side-channel
information he does not have immediate access to the factors involved in a op-
eration. However it is prudent to say that not all operations look the same, and
this is the basic idea for side-channel attacks. Inserting randomization tech-
niques into one’s protocol or any other cryptosystem based on elliptic curves
is a good idea. This is combined with the usefulness of projective coordinates
[6],[16]. Take for example Jacobian projective coordinates, which are triplets
of the form (X,Y, Z) with Z = 0, they represent affine points (X/Z2, Y/Z3);
then for any field element ε 6= 0,(ε2X, ε3Y, εZ) is a representation of the same
point on the curve. Randomization makes it difficult for an attacker to guess
the values obtained by using a randomly chosen ε.

Point doubling or point addition using projective coordinates results in a
point represented with a Z-coordinate that is the product of the Z-coordinate(s)
of the input point(s) and a short polynomial involving one or more other co-
ordinates of the input points; thus the output point is again in a randomized
representation.

Randomization makes it difficult for an attacker to guess or imply that a
certain operation involving known points is taking place at a certain point in
time. Still the attacker may observe the same operation reoccurring if the same
field operation is execute several times throughout the computation. Even if
the attacker cannot obtain the factors involved in the operation we still want
to mask this as this in some cases may be considered an important information
leakage.

Point multiplication, R = [e]P , is performed in stages by a great part of
existing algorithms, these stages are as follows:

Precomputation stage: First, independently of the specific multiplier e, cer-
tain small multiples of P are computed and stored in a table.

Evaluation stage: Second, the product [e]P is evaluated as follows: A vari-
able A is initialized to one of the table values; then, many times, A either
is doubled or a table value is added to A, replacing the previous value of
A. Finally, A contains the result [e]P .
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Algorithms that adhere to this structure should use a table to store the
value of Z2 by using a tuple of the form (X,Y, Z, Z2) and store it in the table,
instead of the classical approach of storing (X, Y, Z) and then perform the
precomputation phase when needed.Storing the tuple (X, Y, Z, Z2) is called
using extended point representation, if the usage of the suggested method of
extended point representation presented in [1], and [7] is neglected an attacker
may be able to tell which point additions use the same entries in the table.

Another problem with algorithms that follow the above structure is that
they need to insert dummy additions in their structure in order to achieve a
fixed pattern of doubling and additions. These additions involve additions of a
table value to the variable A, and then discarding the result. The main issue
with dummy additions is that the value of A is never changed, this becomes
a major problem when working with Jacobian projective coordinates. This is
because each point operation requires squaring the Z-coordinate of A, if two
consecutive point operations are performed the same value of Z will be used
leading to the same squaring being performed. This is why dummy operations
should be avoided.

It is possible, but inefficient, to randomize the point representation after
each point operation. (If this is done, dummy additions are no longer a prob-
lem.) For point multiplication algorithms of the above form, it is more practical
to use randomization just twice or once: If the precomputed table of multiples
of P is stored in projective coordinates, then the representation of P should be
randomized before the table is computed. Also at the beginning of the second
stage, after the initial value has been assigned to A, the representation of A
should be randomized. If the table of multiples of P is stored in affine coordi-
nates (to speed up the evaluation stage by using mixed addition of affine and
projective points [5]), then the first randomization obviously is not necessary.

3 MULTIPLIER RECORDING PROVIDING
RESISTANCE AGAINST SIDE-CHANNEL
ATTACKS

We show how to perform point multiplication [e]P in a way such that doubling
and additions occur in a fixed pattern in order to provide resistance against
side-channel attacks. Subsection 3.1 describes an algorithm for recoding the
multiplier e into a special signed-digit encoding. In section 3.2, we discuss the
multiplication algorithm implied by this encoding. Section 3.3 shows that, un-
less e is ill-chosen, this point multiplication algorithm indeed limits information
leakage as intended.
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3.1 RECORDING ALGORITHM

Let the positive integer e be given in 2w-ary digits where w ≥ 2 is a small
integer: That is,

e =
k′∑

i=0

b′i · 2wi

with bi ∈ {0, 1, ..., 2w − 1}. We demand that k. be chosen minimal, i.e. b′k′ 6= 0.
For i > k, we define that b′i = 0. We will show how to convert this into a
representation

e =
k∑

i=0

bi · 2wi

such that bi ∈ {−2w, 1, 2, ..., 2w− 1}. This means that we disallow digit value 0
and instead introduce the new value −2w. Intuitively, the recoding algorithm
replaces 0 digits by −2w and increments the next more significant digit to
adjust the value. It is easy to see that bk must be positive (otherwise e would
be negative) and that the representation of e needs to grow by at most one
digit, i.e. k = k′ or k = k′ + 1. We express the recoding algorithm recursively,
using auxiliary values ci and ti such that 0 ≤ ci ≤ 2 and 0 ≤ ti ≤ 2w + 1: Let

c0 = 0,

and for i = 0, ..., k′ + 1, let
ti = b′i + ci

and

(ci+1, bi) =





(1,−2w) if ti = 0
(0, ti) if 0 < ti < 2w

(2,−2w) if ti = 2w

(1, 1) if ti = 2w + 1.

Note that we always have ci+1 · 2w + bi = ti.
If bk′+1 = −2w, then e =

∑k+1
i=0 bi · 2wi in this case, we set k = k′ + 1.

Otherwise, we have e =
∑k′

i=0 bi ·2wi and b′k 6= −2w, and we set k = k′. Observe
that if bk = 1 (and k > 0), then bk−1 6= −2w. As a measure against side-channel
attacks on the recoding algorithm itself, assignments can be implemented by
table lookups instead of using conditional statements. Storing the converted
representation of e requires almost no additional memory compared with the
original representation: Digits with value −2w can be encoded as a pattern of
bits all set to zero. If w is understood, then this new representation can be
stored as an ordinary integer. (Leading 0 digits can simply be ignored because
bk is never −2w.) This integer is at most two bits longer than e; the maximum
possible length growth occurs if k = k′ + 1 and bk = 2. It may be desirable
to ensure that the encoded form has a predetermined maximum index k. For
our point multiplication application, if kw is large enough compared with the
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binary length of p, this is easy to do: If necessary, adjust e by adding p or a
multiple of p. If a random multiplier is required and a uniform distribution is
not essential, then random bits can be used directly to generate the recoded
form of e. In this case, too, it should be ensured that bk−1 6= −2w if bk = 1.

3.2 POINT MULTIPLICATION ALGORITHM

Remember that we want to compute [e]P where point P should have order p,
p being a large prime that divides the order of the elliptic curve E(Fq). For
our point multiplication algorithm to work as intended, ord(P ) may be any
positive multiple of p.

If point P can be chosen by the attacker, we must be aware that it might
have incorrect order. In case that #E(Fq) = p, then (besides testing that P is
indeed a point on the curve) we just have to verify that P is not the point at
infinity, O. Otherwise, we need an additional sanity check. Let h be the cofactor
of the elliptic curve, i.e. the integer #E(Fq)/p. Curves used for cryptography
are usually selected such that h is small, e.g. h ≤ 4 as required by [3]. Thus [h]P
can be computed quickly; if it is not O, then we know that p divides ord(P ).
If P has incorrect order, computing [e]P must be rejected. Otherwise, given a
representation

e =
k∑

i=0

bi · 2wi

of e as determined by the recoding algorithm of 3.1, [e]P can be computed as
follows:

Assume that points P, [2]P, [3]P, ..., [2w − 1]P, [−2w]P have been stored in
a table. Let ej =

∑k
i=j bi · 2w(i−j) for j = 0, ..., k. The goal is to compute

[e0]P = [e]P . We can determine [ek]P = [bk]P simply by table lookup. Then,
to compute [ej ]P for j going down to 0, we can use that ej = 2w · ej + 1 + bj

and thus [ej ]P = [2w]([ej+1]P ) + [bj ]P , where [bj ]P again is available by table
lookup. This is essentially the 2w-ary algorithm for computing [e]P , except
that we use an unusual set of digits. The procedure is given in algorithm 3.2.
We show a high-level description of the algorithm; as explained in subsection
2.2, implementations should use randomized projective coordinates, and values
computed in the precomputation stage should be stored in extended point
representation. The algorithm requires exactly 2w−1 + kw point doubling and
2w−1 − 1 + k point additions. (Inverting [2w]P to obtain [−2w]P is essentially
free in elliptic curves.)

3.3 UNIFORMITY OF THE POINT MULTIPLICATION
ALGORITHM

It is apparent that algorithm 3.2 uses doubling and additions in a regular pat-
tern. As discussed in Section 2, to show that the algorithm has uniform behavior
and thus is suitable for limiting information leakage during the computation
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of [e]P , we also have to show that the following special cases of point doubling
and point addition can be avoided:

• [2]O
• [2]A where ord(A) = 2
• A + O or O + B
• A + A
• A + (−A)

We have required that ord(P ) be a positive multiple of p. Without loss of
generality, here we may assume that ord(P ) = p. (Otherwise, multiply P by the
cofactor h = #E(Fq)/p to obtain a point of order p. In the algorithm performed
for P, the above special cases can occur only when one of them would occur

in the algorithm performed for [h]P ; in particular, ord(A) = 2 would imply
[h]A = O, so points of order 2 are not an issue if we can show that the point
at infinity can be avoided.) Then, as 2w can be expected to be much smaller
than p, all precomputed points Pbj

= [bj ]P in algorithm 3.2 will be of order p.
Thus, initially we have A 6= O; and as long as we avoid additions of the form
A + (−A), it will stay like this. So what remains to be checked is whether in
the evaluation stage of algorithm described in 3.2; we can avoid that A = [bj ]P
or A = [−bj ]P before an addition takes place. With ej defined as in section
3.2, the point addition step in the second loop of this algorithm performs the
point addition [2w∆ej+1]P + [bj ]P . Thus we are save if

2w 6= ej+1 ± bj(mod p).

Since | ej |≤ 2(1+k−j)w and | bj |≤ 2w, for many indices j we have | 2w ·ej+1 |
+ | bj |< p, meaning that reduction modulo p does not matter and it suffices
to check whether 2w · ej+1 ≤ ±bj . The largest index to consider is j = k − 1:
Can we be sure that 2w · ek ≤ ±bk−1? Indeed we can, as ek = bk and if bk = 1,
then bk−1 6= −2w (see section 3.1). It follows that ej · 2(k−j)w, which shows
that the incongruence is satisfied for indices j < k − 1 too as long as we do
not have to consider reduction modulo p. For indices j so small such that this
modular reduction is relevant, we argue that if e is sufficiently random, then the
probability of picking an e such that the above incongruence is not satisfied can
be neglected: It is comparable to the probability that e mod p can be guessed
in a modest number of attempts, which can be presumed to be practically
impossible.

4 EFFICIENCY ANALYSIS

Efficiency of presented algorithm and similar methods is measured in the num-
ber of field operations needed by the algorithm to compute each addition or
point doubling. For example the Joye-Quisquater algorithm needs a number
of 12 multiplications. This result is the expected number of operations for
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the computation of the product [e]P per bit of e. The Liardet-Smart method
requires 16 field operations each addition or doubling [11]. Because of this we
will take into consideration only the Joye-Quisquater algorithm in our efficiency
comparisons.

The most efficient algorithm in use today is the point multiplication algo-
rithm based on signed windows [12], if 2w− 1 points are precomputed then the
number of field multiplications is (1 + 1

w+3 ) · 12, and this estimation does not
include precomputation effort. For multipliers whose length l is between 120
and 336 bits, the expected number of operations required by the signed window
method is minimized when 23 − 1 = 7 points are precomputed; the expected
number of field operations then is about

(7 +
7
6
· l) · 12 = 84 + 14 · l

which includes the precomputation effort.
For elliptic curve cryptography over fields of odd characteristic, curves are

usually chosen such that a doubling can be done in 8 field multiplications and
an addition can be done in 16 field multiplications using Jacobian projective
coordinates [7]. (Further speed-ups are possible by using mixed coordinates for
faster point addition; see [5] and [2].) With our method of section 3, using an
extended point representation for precomputed points as explained in section
2.2, one additional field multiplication is required for each precomputed point,
but only 15 field multiplications are needed for each evaluation stage point
addition. Thus, if we use w = 4, we need 8+14 ·15 = 11.75 field multiplications
for each bit of e (not including the effort to precompute 15 points). This is less
than 12, so for sufficiently long e this method will be faster than the Joye-
Quisquater method.

Choosing w = 4 minimizes the number of field multiplications for scalars of
length l between 84 and 277 bits; it is about

192 + 11.75 l,

including 23 ·8+(23−1)·16+24 = 192 multiplications for precomputation using
extended point representation (but neglecting the small additional cost for ran-
domising projective coordinates). Compared with the Joye-Quisquaterapproach,
this is nearly 10% faster even for multipliers as short as 120 bits. The method
of [16] for curves having a Montgomery form is more efficient than any of the
other methods: It needs only 11 field multiplications per bit [15], and as it is
directly based on the binary point multiplication algorithm, it does not involve
any precomputation.

5 CONCLUSION

We have presented a method for elliptic curve point multiplication that can be
shown to provide security against side-channel attacks. The algorithm uses a
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special signed-digit encoding to ensure that point doublings and point additions
occur in a uniform pattern. No dummy additions are required; implementing
the method using randomised projective coordinates and storing precomputed
points in extended point representation limits information leakage to a mini-
mum. While the method of Okeya and Sakurai [16] for curves with Montgomery
form is more efficient, the approach of the current paper is much more general:
Unlike various previous proposals, it is applicable to the recommended curves
of [14] and [4].
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